exida explains Blog

Back to Basics: Failure Rates - λDU

Back to Basics: Failure Rates - λDU

The Greek symbol  λDU is the undetectable dangerous failure rate in functional safety expressed in the unit of measurement of FITs which can be determined through FMEDAs. (FITs (λ) are failures per billion hours, expressed by 10-9 hours).

λDU is the number of dangerous undetected failures…

Read More...

What’s inside a COVID-19 Ventilator?

What’s inside a COVID-19 Ventilator?

At exida, we just finished a Failure Modes and Effects Analysis (FMEA) on a medical ventilator. This was done for a new manufacturer who needed independent design verification.  It was a fascinating job.  We found lots of pneumatic devices very similar if not identical to the kind used in…

Read More...

10 Years After, Has Anything Been Learned from Deepwater Horizon?

10 Years After, Has Anything Been Learned from Deepwater Horizon?

It’s hard to believe that it’s been 10 years since the Deepwater Horizon incident on April 20th 2010.  Even today, the Gulf Coast is still feeling the effects.  In its latest estimates, BP is looking at a total loss of $65Bn USD, in settlements, fines and compensation.  This latest estimate was published in…

Read More...

Back to Basics: Failure Rates - λD

Back to Basics: Failure Rates - λD

The Greek symbol  λD represents dangerous failure rates in functional safety, usually expressed in the unit of measurement of FITs, and can be determined through FMEDAs. (FITs (λ) are failures per billion hours, expressed by 10-9 hours).

λD is the number of dangerous failures per…

Read More...

Back to Basics: Failure Rates - λ

Back to Basics: Failure Rates - λ

The Greek symbol lambda, λ, represents failure rates in functional safety, usually expressed in the unit of measurement of FITS.

λ can be expressed as a total failure rate for a device (λT), or it can be broken down into more specific groupings:

  • Safe detected (λSD)
  • Safe undetected (λSU)
  • Read More...

Back to Basics: Failure Rates - FITS

Back to Basics: Failure Rates - FITS

Failures ITime or Failure UnIT

FITs is the number of failures per billion hours for a piece of equipment. 

It is mentioned in both IEC 61508 and IEC 61511 standards as a preferred unit of measurement expressed by 10-9 hours.

Example: 5 FITs is expressed as 5 failures every 10-9 hours (5x10-9). 

When you…

Read More...

Back to Basics: Failure Rates

Back to Basics: Failure Rates

Failure rates are the number of failures per unit time for a piece of equipment which are usually assumed to be a constant value. They can be broken down into several categories, such as safe and dangerous, detected and undetected, and independent/normal and common cause. Failure rates are often…

Read More...

Bow Ties Part I: Great for Formal Occasions and for Risk Management

Bow Ties Part I: Great for Formal Occasions and for Risk Management

The bow tie methodology, originally developed by ICI in the late 1970’s, has seen increasing industry adoption over the last 20 years. Bow tie diagrams build on the “Swiss Cheese Model” of hazard escalation and causation popularized by James Reason. They provide a powerful means for visualizing how a…

Read More...

Back to Basics 23 – Stiction

Back to Basics 23 – Stiction

What is Stiction? 

stiction

Stiction is the resistance to the start of motion usually measured as the difference between the external force being applied in order to overcome the static friction and the force to maintain movement between the two contacting or working surfaces.

It can…

Read More...

Why Bother With Systematic Issues?

Why Bother With Systematic Issues?

You may be wondering why this question is being asked?  Isn’t it obvious that systematic issues are important and need to be considered?  It may be that some of you reading this blog may not even understand what is meant by systematic issues.  In which case, it may surprise you to know…

Read More...

Back to Basics 22 – Cycle Testing

Back to Basics 22 – Cycle Testing

A cycle test is done on a set of products (>20) until 10% of the units under test fail. 

The number of cycles is converted to a time period by knowing the cycles per hour in any particular application. 

A failure rate is calculated by dividing the 10% failure…

Read More...

ISO 26262 Independence and Related Terms

ISO 26262 Independence and Related Terms

The “ISO 26262 Road vehicles – Functional safety” specification defines the concepts of “Independence”, “Interference” and other terms which can be a little confusing. This discussion will try to make the concepts clearer.

Independence

Let’s talk about “Independence” and associated concepts first.  “Independence” is a concept used within Dependent…

Read More...

Back to Basics 21 – The B10 Method

Back to Basics 21 – The B10 Method

The B10 method uses cycle test data to predict failure rates. 

A cycle test is done on a set of products (>20) until 10% of the units under test fail. The number of cycles until failure is called the B10 point.

The B10 number of cycles is converted to a…

Read More...

Back to Basics 20 – Safe Failure Fraction, SFF

Back to Basics 20 – Safe Failure Fraction, SFF

Safe Failure Fraction (SFF) is defined as the ratio of the average rate of safe failures plus dangerous detected failures of the subsystem to the total average failure rate of the subsystem. It is defined for a single channel (no redundancy, 1oo1).

It is a measurement of the likelihood of…

Read More...

Back to Basics 19 – Route 2H

Back to Basics 19 – Route 2H

Route 2H is one of two Architectural constraints options made available in the standards IEC 61508-2 and IEC 61511. Route 1H . Both Route 1H and Route 2H are limitations that impose the hardware selected to implement a safety-instrumented function, regardless of the performance calculated for a subsystem. 

What exactly is Route 2H

Read More...